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HEALTH RISK ASSESSMENT USING MACHINE LEARNING 

CLASSIFIERS ON WEARABLE IOT DEVICES 

 

 

 

 

Abstract: 

Electrocardiogram (ECG) arrhythmia classification is crucial for 

diagnosing and managing cardiac conditions, as arrhythmias can 

lead to serious health complications if left untreated.  The 

application of machine learning-based ECG arrhythmia 

classification has significant implications for cardiac healthcare and 

clinical practice. Accurate and timely classification of arrhythmias 

enables healthcare professionals to diagnose cardiac conditions, 

determine appropriate treatment strategies, and monitor patient 

health effectively. Moreover, machine learning models can support 

remote monitoring and telemedicine initiatives, allowing for early 

detection of arrhythmias and timely intervention, particularly in 

underserved or remote areas. Additionally, ECG arrhythmia 

classification facilitates research efforts aimed at understanding the 

underlying mechanisms of arrhythmias and developing novel 

diagnostic and therapeutic approaches. Existing methods for ECG 

arrhythmia classification often rely on manual interpretation by 

cardiologists or rule-based algorithms, which may be subjective, 

time-consuming, and prone to errors. These methods may struggle 

to accurately classify complex arrhythmias or differentiate between 

similar arrhythmia patterns. Moreover, traditional approaches may 

overlook subtle changes in ECG signals or fail to capture the full 

spectrum of arrhythmia features, leading to suboptimal 

classification performance. Additionally, the increasing volume and 

complexity of ECG data pose challenges for traditional classification 

methods, necessitating more advanced and data-driven approaches. 

The proposed system utilizes machine learning techniques to 

automate and enhance ECG arrhythmia classification, addressing 

the limitations of existing methods. This work employs supervised 

learning algorithms to train models on ECG data and classify 

different types of arrhythmias. By preprocessing ECG signals, 

extracting informative features, and leveraging advanced 

classification techniques. The proposed models can accurately 

identify arrhythmia patterns and classify them into relevant 

categories.  

Keywords: Health Risk Assessment,  Naïve Bayes Classifier, Feature 

Extraction, KNN(K Nearest Neighbour), Real Time Health 

Monitoring, SMOTE(Synthetic Minority Oversampling Technique), 

Model Evaluation, IOT in Healthcare, ECG(Electrocardiogram). 

 

 

 

 

 

I. INTRODUCTION 

Recent advancements in wearable technology and the Internet of 

Things (IoT) have made health monitoring more efficient and 

accessible. Devices like smartwatches, fitness trackers, and medical 

sensors are now widely used to collect real-time health data, such as 

heart rate, blood pressure, oxygen levels, physical activity, and sleep 

patterns. These devices allow for continuous monitoring, providing 

detailed insights into a person’s health. This information helps identify 

potential risks early and supports preventive care measures. 

Machine learning (ML) has become a key tool in analyzing the large 

amounts of data generated by these wearable devices. By finding 

patterns and detecting unusual changes in the data, ML algorithms can 

predict health risks, identify early signs of issues, and help healthcare 

professionals make better decisions. This approach allows healthcare 

to be more personalized, offering solutions tailored to individual 

needs. The combination of wearable IoT devices and machine learning 

has significant potential to improve healthcare by enabling constant 

monitoring, early detection of problems, and reducing costs. 

However, challenges like ensuring data quality, privacy, and security 

must be addressed. Despite these challenges, the benefits of using 

machine learning in health monitoring are substantial, especially in 

improving healthcare outcomes and patient well-being. This research 

focuses on how machine learning classifiers can be applied to health 

risk assessment using data from wearable IoT devices and their 

potential to transform healthcare. 

A key area where this technology is making a difference is in cardiac 

health. Wearable devices can monitor heart health in real time and help 

identify irregular heart rhythms, known as arrhythmias. If left 

undetected, arrhythmias can lead to severe health issues like strokes or 

sudden cardiac death. Traditionally, detecting arrhythmias has relied 

on manual ECG interpretation by cardiologists or rule-based 

algorithms. However, these methods can be time-consuming, 

subjective, and not always accurate. 

Machine learning offers a more efficient and accurate solution to this 

problem. With its ability to process large amounts of data and 

recognize complex patterns, machine learning can automate ECG 

arrhythmia classification. This paper introduces "Predictive Pulse," a 

system that uses machine learning to identify and classify arrhythmias 

with high accuracy. Predictive Pulse can analyze large ECG datasets 

in real time, making it useful not only for clinical diagnostics but also 

for public health monitoring. 

The development of ECG technology began with the invention of the 

electrocardiograph by Willem Einthoven in the early 20th century, 

which enabled the recording of heart activity. While this innovation 

revolutionized cardiac care, traditional methods still rely heavily on 

manual interpretation and basic algorithms. These approaches struggle 

to keep up with the growing volume and complexity of ECG data, 

especially with the introduction of wearable devices. This gap 

highlights the need for scalable and efficient solutions like machine 

learning. 
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This research aims to address the limitations of traditional methods and 

improve the accuracy and efficiency of arrhythmia classification. 

Manual analysis is prone to errors and inconsistencies, while rule-

based algorithms often lack the flexibility to detect subtle variations in 

ECG signals. Machine learning models, trained on extensive datasets, 

can overcome these challenges by automating the classification 

process, enabling early intervention and personalized treatments. 

The Predictive Pulse system represents a significant advancement in 

this field. It improves cardiac diagnostics by providing accurate and 

real-time classification of arrhythmias. The system also supports 

remote monitoring and telemedicine, making healthcare more 

accessible, particularly for people in remote areas. Additionally, it is 

scalable and can be used in large-scale public health initiatives. By 

combining wearable IoT technology with machine learning, Predictive 

Pulse has the potential to revolutionize how arrhythmias are detected, 

diagnosed, and managed, ultimately improving cardiac healthcare and 

patient outcomes. 

  II. RELATED WORK 

The heart is a vital organ that functions as the body’s engine, 

continuously pumping blood to deliver oxygen and nutrients while 

removing waste products. Beating approximately 100,000 times daily, 

the heart generates electrical activity that can be recorded as an 

electrocardiogram (ECG) using skin electrodes. The ECG captures the 

electrical signals of the heart in the form of PQRST waveforms, which 

reveal vital information about heart rate variability (HRV) and 

morphology, playing a crucial role in the diagnosis of arrhythmias [1]. 

Cardiac arrhythmias such as premature atrial contraction (PAC) and 

premature ventricular contraction (PVC) are significant indicators of 

cardiac health. PACs originate in the atria or atrioventricular (AV) node 

and are marked by abnormal P wave morphology and compensatory 

pauses shorter than two normal RR intervals. PVCs arise from the 

ventricles and lead to a compensatory pause that inhibits the 

subsequent sinus beat, further emphasizing the importance of timely 

detection and classification for maintaining cardiac health [2, 3]. 

The field of healthcare has witnessed groundbreaking advancements 

with the advent of biomedical sensors, the Internet of Medical Things 

(IoMT), and artificial intelligence (AI). These innovations have 

revolutionized traditional healthcare systems by enabling real-time 

monitoring, improving diagnostic accuracy, and reducing the need for 

frequent clinical visits [4, 5]. IoMT, when integrated with 

microelectronics, 5G technology, and AI, forms the foundation of 

smart healthcare systems, offering cost-effective and precise solutions 

[6]. 

The human body is known as a complex electromechanical system 

generating several types of biomedical signals, such as an 

electrocardiogram (ECG), which is a record of the dynamic changes of 

the human body that need to be monitored by smart healthcare systems. 

For instance, the EKG sensor measures cardiac electrical potential 

waveforms. It is used to create standard 3-lead electrocardiogram 

(EKG) tracings to record the electrical activity in the heart or to collect 

surface electromyography (sEMG) to study the contractions in the 

muscles of the arm, leg, or jaw. Simply, an ECG graphs heartbeats and 

rhythms. The classification of an ECG heartbeat plays a substantial 

role in smart healthcare systems [7,8], where the presence of multiple 

cardiovascular problems is generally indicated by an ECG. In the 

subsequent ECG waveform, diseases cause defects. However, early 

diagnosis via an ECG allows for the selection of suitable cardiac 

medication and is thus very important and helpful for reducing heart 

attacks [9].  

The method of detecting and classifying arrhythmia is not an easy task 

and may be very difficult even for professionals because sometimes it 

is important to examine multiple pulses of ECG data, obtained, for 

example, during hours, or even days, by a Holter clock. Furthermore, 

there is a possibility for errors by humans during the ECG recording 

study due to fatigue. Building a fully automatic arrhythmia detection 

or classification system is difficult. The difficulty comes from the large 

amount of data and the diversities in the ECG signals due to the 

nonlinearity, complexity, and low amplitude of ECG recordings, as 

well as the nonclinical conditions, such as noise [10]. Despite all these 

difficulties, methods for ECG arrhythmia classification have been 

widely explored [11,12] but choosing the best technique for smart 

patient monitoring depends on the robustness and performance of these 

methods. Several convolutional neural network (CNN)-based 

approaches have been introduced for the task [13,14].  

In [15], a subject-adaptable ECG arrhythmia classification model was 

proposed and trained with unlabeled personal data. It achieved an 

average performance of 99.4% classification accuracy on the MIT-BIH 

database. In [16], an end to-end deep multiscale fusion CNN model of 

multiple convolution kernels with different receptive fields was 

proposed, achieving an F1 score of 82.8% and 84.1% on two datasets. 

Chen et al. [17] combined CNN with long short-term memory to 

classify six types of arrhythmia and achieved an average accuracy of 

97.15% on the MIT-BIH database. A recent approach by Atal and 

Singh [18] proposed using the bat-rider optimization to optimally tune 

a deep CNN to achieve an accuracy of 93.19% with a sensitivity of 

93.9% on the MIT-BIH database. Unfortunately, most CNN-based 

methods are effective only for small numbers of arrhythmia classes, 

are computationally intensive, and need a very large amount of training 

data. This is a great challenge for using the CNN-based methods on 

real-time applications or wearable devices with limited hardware [19]. 

On the other hand, many research efforts have been devoted to ECG 

arrhythmia classification using ML classifiers, such as SVM, RF, 

KNN, linear discriminants, multilayered perceptron, and regression 

tree [20,21].  

It is well known that the SVM classifier does not become trapped in 

the well-known local minima points, requires less training data, and is 

faster than CNN-based methods [22]. In [23], wavelet transform and 

ICA were used for the morphological features description of the 

segmented heartbeats. The features were fed into an SVM to classify 

an ECG into five classes. In [24], least square twin SVM and KNN 

classifiers based on features’ sparse representation were used for 

cardiac arrhythmia recognition. The experiments were carried out on 

the MIT-BIH database in category and personalized schemes. A 

method based on improved fuzzy C-means clustering and Mahalanobis 

distance was introduced in [25], while in [26], abstract features from 

abductive interpretation of the ECG signals were utilized in heartbeat 

classification. Borui et al. [27] proposed a deep learning model 

integrating a long short-term memory with SVM for ECG arrhythmia 

classification. Martis et al. [28] evaluated the performance of several 

ML classifiers and concluded that the kNN and higher-order statistics 

features achieved an average accuracy of 97.65% and sensitivity of 

98.16% on the MIT-BIH database. In [29], the RF classifier was 

utilized with CNN and PQRST features for arrhythmia classification 

from imbalanced ECG data. The major drawback of ML classifiers 

(e.g., SVM) is their deficiency in interpreting the impact of ECG data 
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features on different arrhythmia patterns for extracting the optimal 

features. Further, the performance of most ML classifiers is 

questionable because the interrelationship between the learning 

parameters is not well modeled, especially for data features with high 

dimensions. 

III. PROPOSED WORK 

The proposed methodology for ECG arrhythmia classification aims to 

build an accurate and reliable system using machine learning 

techniques. The approach begins with preprocessing the dataset, which 

includes handling missing values, encoding categorical variables, and 

addressing class imbalances using SMOTE. Feature selection is 

performed using the SelectKBest algorithm to extract the most relevant 

attributes, ensuring optimal model performance. The primary focus is 

on implementing a K-Nearest Neighbors (KNN) classifier, which 

classifies data points based on the majority class of their nearest 

neighbors. 

1. ECG Arrhythmia Classification: The research aims to develop a 

machine learning-based system for accurately classifying 

Electrocardiogram (ECG) data to detect various types of arrhythmias. 

Arrhythmias are abnormalities in the heart's rhythm, which can have 

serious implications for a patient's health if left undetected or 

untreated. 

2. Dataset Preprocessing: The first crucial step involves preparing the 

dataset for analysis. This includes handling missing values, ensuring 

data integrity, and encoding categorical variables. By removing any 

rows with missing values and encoding the target variable ('type'), the 

dataset becomes ready for further analysis and modelling. 

 

Figure 3.1: Overall Design 

3. SMOTE Data Balancing: Addressing class imbalance concerns is 

paramount in ensuring the model's generalization ability. The 

Synthetic Minority Oversampling Technique (SMOTE) is applied to 

balance the distribution of classes in the dataset. This technique 

generates synthetic samples of the minority class to alleviate class 

imbalance, thus enhancing the model's performance in accurately 

classifying arrhythmias. 

4. Feature Selection with SelectKBest Algorithm: Feature selection 

is crucial for building a model founded on the most informative 

attributes. The SelectKBest algorithm, based on ANOVA F-value, is 

employed to select the most relevant features from the dataset. This 

ensures that only the most discriminative features contribute to the 

classification task, optimizing the model's performance and 

interpretability. 

5. Existing Naive Bayes Classifier: An existing Naive Bayes (NB) 

classifier is utilized as a benchmark model for arrhythmia 

classification. This classifier serves as a baseline against which the 

performance of the proposed K-Nearest Neighbors (KNN) classifier is 

evaluated. Comparing the performance of the proposed model to an 

established method provides insights into its effectiveness and 

potential improvements. 

6. Proposed KNN Classifier: The proposed KNN classifier takes 

center stage in the research. KNN is a non-parametric and instance-

based learning algorithm used for classification tasks. By considering 

the 'k' nearest neighbors to a data point, KNN assigns the majority class 

among its neighbors as the predicted class. The effectiveness of KNN 

in ECG arrhythmia classification is explored and evaluated thoroughly. 

7. Performance Comparison: Rigorous assessment of both the 

existing NB classifier and the proposed KNN classifier is conducted 

using diverse performance metrics such as accuracy, precision, recall, 

and F1-score. A detailed classification report is generated to highlight 

the strengths and weaknesses of each model. This comparison provides 

valuable insights into the relative performance of the classifiers and 

guides decision-making regarding model selection. 

8. Prediction on Test Data with KNN Classifier: Finally, the trained 

KNN classifier is used to make predictions on an external test dataset 

("test.csv"). This step simulates real-world deployment scenarios, 

demonstrating the model's efficacy in practical applications such as 

disease outbreak monitoring and clinical decision support systems. By 

predicting outputs on unseen data, the utility and generalization ability 

of the model are assessed, paving the way for potential real-world 

implementation.  

Existing Algorithm: Naive Bayes Classifier 

Naive Bayes is a probabilistic machine learning algorithm based on 

applying Bayes' theorem with the "naive" assumption of conditional 

independence between every pair of features given the class label. 

Despite its simplicity, it's highly effective in various classification 

tasks, particularly in text classification and medical diagnostics. 

How It Works:  

The Naive Bayes classifier calculates the posterior probability of each 

class based on the input features, then predicts the class with the 

highest posterior probability. Bayes' theorem is applied as follows: 

P(C∣X)=P(X∣C)⋅P(C)P(X)P(C|X) = \frac{P(X|C) \cdot 

P(C)}{P(X)}P(C∣X)=P(X)P(X∣C)⋅P(C) 

Where: 

• P(C∣X)P(C|X)P(C∣X) is the posterior probability of class 

CCC given the input features XXX. 

• P(X∣C)P(X|C)P(X∣C) is the likelihood of the features given 

class CCC. 

• P(C)P(C)P(C) is the prior probability of class CCC. 

• P(X)P(X)P(X) is the probability of the features XXX 

across all classes. 

Architecture 
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• Input Layer: The features of the input data. 

• Feature Extraction: Calculate the likelihood of each 

feature given the class. 

• Probability Calculation: Use Bayes' theorem to compute 

the posterior probabilities for each class. 

• Decision Making: Choose the class with the highest 

posterior probability as the output. 

Disadvantages:  

• Feature Independence Assumption: Naive Bayes assumes 

that all features are independent given the class label, which 

is rarely the case in real-world data. This assumption can 

lead to inaccurate predictions if features are highly 

correlated. 

• Zero Probability: If a certain feature value does not occur 

in the training data for a given class, the model assigns zero 

probability to that class. This can be mitigated with 

techniques like Laplace smoothing. 

• Limited Applicability: Naive Bayes might not perform well 

in cases where the relationships between features are 

complex or involve interactions. 

Proposed Algorithm: K-Nearest Neighbors (KNN) 

What is KNN:  

K-Nearest Neighbors (KNN) is a simple, non-parametric, and lazy 

learning algorithm used for classification and regression tasks. In 

KNN, the classification of a new data point is based on the majority 

class among its 'k' nearest neighbors in the feature space. 

How It Works 

1. Choose the number of neighbors (k): Determine the value 

of kkk, the number of closest neighbors to consider for 

classification. 

2. Calculate Distance: For the input data point, calculate the 

distance to all other points in the dataset using a suitable 

distance metric (e.g., Euclidean distance). 

3. Identify Neighbors: Select the kkk data points that are 

closest to the input data point. 

Architecture 

• Input Layer: The features of the input data. 

• Distance Calculation Layer: Computes distances between 

the input data and all other data points. 

• Neighbor Selection: Identifies the 'k' nearest neighbors 

based on the calculated distances. 

• Classification: Determines the output class based on the 

majority vote from the 'k' nearest neighbors. 

IV. RESULTS AND DISCUSSIONS 

4.1 Implementation Description 

The implementation provided is a machine learning-based approach 

for Electrocardiogram (ECG) arrhythmia classification, aiming to 

automate and enhance the diagnosis and monitoring of cardiac 

conditions. The abstract sets the context by highlighting the 

significance of accurate arrhythmia classification in cardiac 

healthcare. Traditional methods often involve manual interpretation or 

rule-based algorithms, which can be subjective and time-consuming. 

They may struggle with complex arrhythmias and fail to capture subtle 

changes in ECG signals. To address these limitations, the proposed 

system utilizes machine learning techniques, specifically supervised 

learning algorithms, to train models on ECG data and classify different 

types of arrhythmias. The implementation begins with data 

preprocessing, including handling missing values and encoding 

categorical variables. Then, it employs techniques like SMOTE for 

handling class imbalance and SelectKBest for feature selection to 

improve model performance.  

The code proceeds to split the dataset into training and testing sets and 

trains a KNeighborsClassifier model on the training data. If a pre-

trained model exists, it loads the model; otherwise, it trains a new one 

and saves it for future use. Metrics such as accuracy, precision, recall, 

and F1-score are calculated to evaluate the model's performance. 

Additionally, a confusion matrix and classification report are generated 

to provide a detailed analysis of the model's predictions.  

Furthermore, the implementation demonstrates how the trained model 

can be used for real-world applications. It loads a separate test dataset, 

applies feature selection using the previously defined selector, and 

makes predictions on the selected test data. The predictions are then 

interpreted, and corresponding actions can be taken based on the 

identified arrhythmia types.  

The provided implementation showcases a comprehensive approach to 

ECG arrhythmia classification using machine learning. It addresses 

common challenges in traditional methods, such as subjectivity and 

inefficiency, by leveraging advanced techniques for data 

preprocessing, model training, and evaluation. By automating the 

classification process, the system enables more accurate and timely 

diagnosis of cardiac conditions, thereby improving patient outcomes 

and facilitating remote monitoring initiatives. Additionally, the 

implementation demonstrates the practical applicability of the trained 

model in real-world scenarios, highlighting its potential for enhancing 

clinical practice and supporting healthcare professionals in their 

decision-making processes. 

4.2 Dataset Description 

The dataset appears to contain information related to cardiac 

electrophysiology, likely derived from electrocardiogram (ECG) 

recordings, as indicated by the presence of intervals and waveform 

morphologies.  

0_pre-RR: This column seems to represent the pre-RR interval, which 

is the duration between two consecutive R waves on an ECG trace. It's 

a measure of the time between two heartbeats, specifically before a 

premature ventricular contraction (PVC) or ectopic beat. 

0_post-RR: Similar to the pre-RR interval, this column likely 

represents the post-RR interval, measuring the duration between two 

consecutive R waves following a PVC or ectopic beat. 
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0_pPeak: This could represent the amplitude of the P wave, which 

reflects atrial depolarization on the ECG. It indicates the spread of 

electrical activity across the atria. 

0_tPeak: Likely representing the peak of the T wave, which signifies 

ventricular repolarization on the ECG. The T wave represents the 

recovery phase of the ventricles. 

0_rPeak: This column might represent the peak amplitude of the R 

wave, which corresponds to ventricular depolarization. The R wave is 

the first upward deflection after the P wave. 

0_sPeak: Possibly representing the amplitude of the S wave, which is 

the first negative deflection after the R wave in a QRS complex. It 

indicates the completion of ventricular depolarization. 

0_qPeak: This could represent the amplitude of the Q wave, the initial 

negative deflection of the QRS complex, reflecting early ventricular 

depolarization. 

0_qrs_interval: This likely denotes the duration of the QRS complex, 

representing the time taken for ventricular depolarization and 

repolarization. 

0_pq_interval: Represents the PQ interval, also known as the PR 

interval, which measures the time from atrial depolarization 

(beginning of the P wave) to ventricular depolarization (beginning of 

the QRS complex). 

0_qt_interval: Denotes the QT interval, representing the time from 

ventricular depolarization (beginning of QRS complex) to 

repolarization (end of T wave). 

0_st_interval: Represents the ST segment, which is the flat, isoelectric 

section between the end of the S wave and the beginning of the T wave. 

It represents the time when the ventricles are depolarized but not yet 

repolarized. 

0_qrs_morph0 to 0_qrs_morph4: These columns likely represent 

morphological features of the QRS complex, potentially extracted 

using signal processing techniques. They may include parameters such 

as amplitude, duration, and shape characteristics. 

1_pre-RR to 1_qrs_morph4: Similar to the corresponding columns 

prefixed with '0_', these columns likely represent the same features for 

a different type of heartbeat, possibly ventricular ectopic beats (VEBs) 

based on the last column. 

type: Indicates the type of heartbeat, such as normal sinus rhythm or 

ventricular ectopic beat (VEB). This column categorizes the data into 

different classes based on the underlying cardiac rhythm. 

4.3 Results Description: 

The y-axis shows the count while the x-axis shows the categories. 

The text at the bottom of the graph explains the categories: 

 

 

⎯ N: Normal sinus rhythm (Normal ECG) 

⎯ VEB: Ventricular ectopic beat (also known as premature 

ventricular contraction) 

⎯ SVEB: Supraventricular ectopic beat (such as premature 

atrial contraction) 

⎯ The tallest bar corresponds to the normal sinus rhythm 

category, which means this rhythm was the most common 

in the data set. 

 

Figure 4.1: Count Plot Before Applying SMOTE 

The count plot provides a comprehensive visual representation of the 

distribution of categorical data within the dataset. At the top of the plot, 

the title "Count Plot" is prominently displayed, along with the value 

"48212.0," which indicates the total number of data points included in 

the analysis. The y-axis of the plot represents the count of data points, 

ranging from 0 to 50,000, offering a quantitative measure of the 

frequency for each category. The x-axis, on the other hand, displays 

the categories under consideration, labeled as "0" and "1," which 

correspond to the distinct classes within the dataset. 

The vertical bars in the plot reflect the distribution of the data across 

these categories. The bar associated with category "0" reaches a height 

of 48,212, signifying that all 48,212 data points in the dataset belong 

to this category. This is a notable feature, as it implies that the dataset 

lacks diversity in terms of class representation, with category "1" 

showing no data points. The absence of a bar for category "1" clearly 

indicates that this category is not represented in the dataset. 

This extreme class imbalance has significant implications for the 

analysis and modeling phases. The dominance of category "0" and the 

absence of category "1" highlight the need for preprocessing 

techniques, such as data balancing, to create a more equitable 

distribution of classes. Without addressing this imbalance, any 

machine learning model trained on this dataset may become biased 

towards category "0," leading to poor generalization and an inability 

to accurately predict instances of the minority class. This visualization 

underscores the importance of recognizing and rectifying class 

imbalances to ensure robust and reliable outcomes in data-driven 

analyses. 
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Figure 4.2: Count Plot After Applying SMOTE 

 

Figure 4.3: Naïve Bayes Classification Report 

Figure is a classification report, which is a type of output used in 

machine learning to evaluate the performance of a classification 

model. The report shows that the model performed well overall, with 

an accuracy of over 84%. The precision, recall, and F1-score are all 

relatively high for each class, which means that the model is good at 

identifying both positive and negative examples of each class. 

 

Figure 4.4: Confusion Matrix of Naïve Bayes Classification 

Figure 4.4 shows confusion matrix for a Naive Bayes classifier 

evaluating heart rhythm types. A confusion matrix is a table used in 

machine learning to visualize the performance of an algorithm that 

makes classifications. In this specific case, the classifier is a Naive 

Bayes classifier, which is a type of algorithm that works well for 

classifying data sets with many features. The confusion matrix shows 

the number of times the classifier correctly and incorrectly classified 

each heart rhythm type. For instance, looking at the bottom left corner 

(Normal sinus and True class), it shows that out of 9285 actual normal 

sinus rhythms, the classifier correctly classified 9285. 

 

Figure 4.5: Classification Report of Kneighborsclassifier 

 

 

 Figure 4.6: Confusion Matrix of Kneighborsclassifier 

 

Figure 4.7: Comparison of NBC and KNC 

Figure 4.5 shows classification report for a K-Nearest Neighbors 

(KNN) algorithm, KNN is a machine learning algorithm used for 

classification tasks. It works by classifying data points based on the 

labels of their nearest neighbors in the training data.  In the report, it 

shows that the KNN model achieved an accuracy of 96.89%. This 

means that the model correctly classified 96.89% of the data points in 

the test set. The report also shows precision, recall, and F1-score for 

each class: normal sinus, ventricular ectopic, and supraventricular 

ectopic. These are metrics used to evaluate the performance of a 

classification model. 

• Accuracy: 85% of the time, the classifier was able to correctly 

identify normal sinus rhythm, ventricular ectopic beats, or 

supraventricular ectopic beats.  
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• Precision: For normal sinus rhythm, the classifier correctly identified 

95% of the instances. It performed slightly lower for the other two 

classifications: 74% for ventricular ectopic beats and 87% for 

supraventricular ectopic beats.  

• Recall: This metric looks at how many of the actual positives the 

classifier was able to identify. The classifier performed well for normal 

sinus rhythm (96%) and ventricular ectopic beats (87%) but less well 

for supraventricular ectopic beats (71%).  

• F1 Score: This is a harmonic mean between precision and recall, 

trying to capture both how precise the model is and how good it is at 

recalling all the positives. The F1 score is similar to accuracy, ranging 

from 78% to 96% for the three classifications. 

The classification report suggests that the KNN model performed well 

on this classification task. 

Figure 4.6 shows confusion matrix for a K-Nearest Neighbors 

classifier. A confusion matrix is a table that allows us to visualize the 

performance of an algorithm in terms of how many classifications were 

correct and how many were incorrect. Let's break down the table in the 

figure: 

Rows represent the actual classes of the data samples. In this case, the 

classes are "Normal sinus," "Ventricular ectopic," and 

"Supraventricular ectopic." These likely refer to different heart rhythm 

classifications. 

Columns represent the classes that the K-Nearest Neighbors classifier 

predicted. Again, these are "Normal sinus," "Ventricular ectopic," and 

"Supraventricular ectopic." 

The numbers in the table represent the number of data points that fall 

into each category. Let's look at some specific examples from the table: 

Top-left corner (10): 10 data points were actually classified as 

"Normal sinus" by the experts, and the K-Nearest Neighbors classifier 

also predicted them to be "Normal sinus". So, these are True Positives 

(TP) for the "Normal sinus" class. 

Bottom-right corner (2000): 2000 data points were actually classified 

as "Supraventricular ectopic" by the experts, and the K-Nearest 

Neighbors classifier also predicted them to be "Supraventricular 

ectopic". So, these are True Positives (TP) for the "Supraventricular 

ectopic" class. 

Box in the middle (8890): These data points were actually classified 

as "Supraventricular ectopic" by the experts, but the K-Nearest 

Neighbors classifier incorrectly predicted them to be "Normal sinus". 

So, these are False Negatives (FN) for "Supraventricular ectopic" and 

False Positives (FP) for "Normal sinus". 

Figure 4.7 shows Precision measures the proportion of correctly 

predicted positive cases among all predicted positive cases. In this 

comparison, KNC exhibits significantly higher precision at 96.88%, 

indicating that it tends to make fewer false positive predictions 

compared to NBC, which has a precision of 84.63%. This suggests that 

KNC is better at correctly identifying positive instances within the 

dataset. Moving on to recall, which evaluates the proportion of actual 

positive cases that were correctly identified by the classifier, KNC 

again outperforms NBC. KNC achieves a recall of 96.97%, indicating 

its ability to effectively capture a higher proportion of true positive 

instances. In contrast, NBC has a recall of 85.43%, suggesting that it 

may miss identifying some positive cases compared to KNC. 

The F-score provides a balanced measure by combining precision and 

recall into a single metric. Interestingly, both classifiers have the same 

F-score, with NBC and KNC both achieving 84.58% and 96.88%, 

respectively. Despite the differences in precision and recall, their 

harmonic mean yields the same F-score, implying a comparable 

overall performance when considering both precision and recall. 

Accuracy represents the overall correctness of the classifier's 

predictions across all classes. KNC once again demonstrates 

superiority over NBC, achieving an accuracy of 96.89% compared to 

NBC's 84.66%. This indicates that KNC's predictions align more 

closely with the actual class labels across the entire dataset. 

V. CONCLUSION 

In conclusion, the application of machine learning in ECG arrhythmia 

classification offers transformative potential for improving cardiac 

healthcare and diagnostic accuracy. This research has demonstrated 

how advanced algorithms and data-driven methodologies can 

overcome the limitations of traditional arrhythmia classification 

methods. By automating the detection and classification of 

arrhythmias from ECG signals, the proposed system aims to enhance 

the efficiency, accuracy, and accessibility of cardiac diagnostics, 

reducing reliance on manual interpretations by cardiologists and 

addressing healthcare disparities, particularly in underserved regions. 

The use of techniques such as SMOTE for data balancing, SelectKBest 

for feature selection, and the K-Nearest Neighbors (KNN) classifier 

underscores the importance of a systematic approach in achieving 

reliable results. These methods allow the system to handle imbalanced 

data effectively and focus on the most informative features, thereby 

improving model performance. By ensuring accurate identification of 

various arrhythmia patterns, the system not only aids in early detection 

and timely intervention but also supports clinical decision-making 

processes, which are vital for managing patient outcomes. 

Beyond its immediate clinical applications, machine learning-driven 

arrhythmia classification holds immense potential for advancing 

cardiac research. The insights gained from analyzing subtle patterns in 

ECG signals contribute to a deeper understanding of the mechanisms 

underlying arrhythmias, enabling the development of innovative 

diagnostic and therapeutic approaches. Furthermore, the availability of 

large annotated ECG datasets facilitates the training of sophisticated 

models that continuously improve in accuracy and generalizability, 

ensuring their relevance in real-world scenarios. 
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